Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays.

نویسندگان

  • Caroline Ojaimi
  • Chad Brooks
  • Sherwood Casjens
  • Patricia Rosa
  • Abdallah Elias
  • Alan Barbour
  • Algis Jasinskas
  • Jorge Benach
  • Laura Katona
  • Justin Radolf
  • Melissa Caimano
  • Jon Skare
  • Kristen Swingle
  • Darrin Akins
  • Ira Schwartz
چکیده

Borrelia burgdorferi is the etiologic agent of Lyme disease, the most prevalent arthropod-borne disease in the United States. The genome of the type strain, B31, consists of a 910,725-bp linear chromosome and 21 linear and circular plasmids comprising 610,694 bp. During its life cycle, the spirochete exists in distinctly different environments, cycling between a tick vector and a mammalian host. Temperature is one environmental factor known to affect B. burgdorferi gene expression. To identify temperature-responsive genes, genome arrays containing 1,662 putative B. burgdorferi open reading frames (ORFs) were prepared on nylon membranes and employed to assess gene expression in B. burgdorferi B31 grown at 23 and 35 degrees C. Differences in expression of more than 3.5 orders of magnitude could be readily discerned and quantitated. At least minimal expression from 91% of the arrayed ORFs could be detected. A total of 215 ORFs were differentially expressed at the two temperatures; 133 were expressed at significantly greater levels at 35 degrees C, and 82 were more significantly expressed at 23 degrees C. Of these 215 ORFs, 134 are characterized as genes of unknown function. One hundred thirty-six (63%) of the differentially expressed genes are plasmid encoded. Of particular interest is plasmid lp54 which contains 76 annotated putative genes; 31 of these exhibit temperature-regulated expression. These findings underscore the important role plasmid-encoded genes may play in adjustment of B. burgdorferi to growth under diverse environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and Purification of Recombinant Outer Surface Protein D of Borrelia burgdorferi

To carry out the immunological experiments on the serum of Multiple Sclerosis (MS) patients, based on a correlation between Borrelia burgdorferi infection and contracting MS autoimmune disease the outer surface protein D (OspD) of the bacterium was expressed and purified. A clone containing the OspD gene in pET11a expression vector under the control of T7 promoter was transformed to the bacteri...

متن کامل

Global transcriptome analysis of Borrelia burgdorferi during association with human neuroglial cells.

As adherence and entry of a pathogen into a host cell are key components to an infection, identifying the molecular mechanisms responsible for cellular association will provide a better understanding of a microbe's pathogenesis. We previously established an in vitro model for Borrelia burgdorferi infection of human neuroglial cells. To expand on our earlier study, we performed B. burgdorferi wh...

متن کامل

Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi

Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcri...

متن کامل

RNA-Seq of Borrelia burgdorferi in Multiple Phases of Growth Reveals Insights into the Dynamics of Gene Expression, Transcriptome Architecture, and Noncoding RNAs

Borrelia burgdorferi, the agent of Lyme disease, differentially expresses numerous genes and proteins as it cycles between mammalian hosts and tick vectors. Insights on regulatory mechanisms have been provided by earlier studies that examined B. burgdorferi gene expression patterns during cultivation. However, prior studies examined bacteria at only a single time point of cultivation, providing...

متن کامل

Correction: In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice

Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 71 4  شماره 

صفحات  -

تاریخ انتشار 2003